Integrating landfill bioreactors, partial nitritation and anammox process for methane recovery and nitrogen removal from leachate

نویسندگان

  • Faqian Sun
  • Xiaomei Su
  • Tingting Kang
  • Songwei Wu
  • Mengdong Yuan
  • Jing Zhu
  • Xiayun Zhang
  • Fang Xu
  • Weixiang Wu
چکیده

A new process consisting of a landfill bioreactor, partial-nitritation (PN) and the anammox process has been developed for landfill leachate treatment. In this study, the landfill bioreactor exhibited excellent performance in methane-rich biogas recovery, with a specific biogas yield of 0.47 L gas g(-1) COD and methane percentages of 53-76%. PN was achieved in the aerobic reactor by high free ammonia (101 ± 83 mg NH3 L(-1)) inhibition for nitrite-oxidizing bacteria, and the desired PN effluent composition (effluent nitrite: ammonium ratio of 1.1 ± 0.3) was controlled by adjusting the alkalinity concentration per unit of ammonium oxidized to approximately 14.3 mg CaCO3 mg(-1) N in the influent. The startup of anammox process was successfully achieved with a membrane bioreactor in 160 d, and a maximum nitrogen removal rate of 216 mg N L(-1) d(-1) was attained for real landfill leachate treatment. The quantitative polymerase chain reaction results confirmed that the cell-specific anammox activity was approximately 68-95 fmol N cell(-1) d(-1), which finally led to the stable operation of the system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Treatment of Landfill Leachate by Anammox Process

In most cases, the anammox process is used for nitrogen removal from reject water coming from dewatering of digested sludge. However, there are more industrial streams suitable for treatment by partial nitritation/anammox process. The landfill leachate may be a good example of such wastewater. Generally, landfilling is the most used solution for treatment of urban solid wastes. The problem with...

متن کامل

Microbial resource management of one‐stage partial nitritation/anammox

About 30 full-scale partial nitritation/anammox plants are established, treating mostly sewage sludge reject water, landfill leachate or food processing digestate. Although two-stage and one-stage processes each have their advantages, the one-stage configuration is mostly applied, termed here as oxygen-limited autotrophic nitrification/denitrification (OLAND), and is the focus of this review. T...

متن کامل

Partial nitritation ANAMMOX in submerged attached growth bioreactors with smart aeration at 20 °C.

Submerged attached growth bioreactors (SAGBs) were operated at 20 °C for 30 weeks in smart-aerated, partial nitritation ANAMMOX mode and in a timer-controlled, cyclic aeration mode. The smart-aerated SAGBs removed 48-53% of total nitrogen (TN) compared to 45% for SAGBs with timed aeration. Low dissolved oxygen concentrations and cyclic pH patterns in the smart-aerated SAGBs suggested conditions...

متن کامل

The SHARON process in the treatment of landfill leachate.

The purpose of this paper was to study the partial nitrification of the nitrogen present in a landfill leachate applying the SHARON process in order to obtain a suitable effluent to the ANAMMOX process. As a first step, the SHARON reactor was fed anaerobically pre-treated leachate at an ammonium concentration of 2,000 mg N/L (1.1 kg N/m(3) d). In such conditions, the average ammonium and nitrit...

متن کامل

Nitrogen removal by a nitritation-anammox bioreactor at low temperature.

Currently, nitritation-anammox (anaerobic ammonium oxidation) bioreactors are designed to treat wastewaters with high ammonium concentrations at mesophilic temperatures (25 to 40°C). The implementation of this technology at ambient temperatures for nitrogen removal from municipal wastewater following carbon removal may lead to more-sustainable technology with energy and cost savings. However, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016